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Spontaneous emission of bound photons from relativistic free electrons

H. Nitta and T. Miyazaki
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan

~Received 18 April 2002; published 20 September 2002!

If the states of photons are bound, another type of spontaneous emission becomes possible for a relativistic
electron due to the symmetry breaking in space. We obtain the radiation probability for a relativistic electron
passing through a box-shaped cavity. The radiation spectrum is discrete in which line positions are determined
by the boundary condition of the cavity.
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It is well known that a free electron in vacuum cann
emit a photon spontaneously because energy and mome
are not conserved simultaneously. However, if the electro
in a binding state at least in one direction, spontaneous e
sion becomes possible. Free electron laser, channeling r
tion, and coherent bremsstrahlung may be classified into
kind of spontaneous emission@1#. In these processes the m
mentum is not conserved in the direction where the radia
electron is bound.

In this paper, we show that yet another type of sponta
ous emission becomes possible when the emitted photon
in binding states, such as those in a cavity or waveguide.
example, if an electron passes through a cavity as show
Fig. 1, it may emit photons spontaneously because pho
do not have definite momentum and hence the restric
coming from momentum conservation does not exist. In t
case, the electron is virtually free, unlike the ‘‘free electro
laser in which the motion of electrons is in fact sinusoidal
spiral.

Let us derive the probability of the ‘‘cavity radiation.’’ As
usual, the interaction between the photon field and a rela
istic electron is given by

H8~ t !52ea•A~r ,t !, ~1!

wherea is the ordinary Dirac matrix andA(r ) is the photon
field,

A~r ,t !5(
s,s

@us,s~r !as,s~ t !1us,s* ~r !as,s
† ~ t !#, ~2!

whereas,s(t) is the annihilation operator of the photon in th
modes and polarizations. A(r ,t) is normalized as

1

8pEV
d3r ~ uEu21uHu2!5(

s,s
\vs,sS as,s

† as,s1
1

2D , ~3!

where E52]A/c]t and H5rotA are the electromagneti
field in the cavity,V the volume of the cavity where photon
are bound,\vs,s the energy of the photon in the modes and
the polarization directions, andas,s(t)5as,s exp(2ivs,st).

In this paper, for the purpose of clarifying the idea of t
radiation process, we consider the radiation field in a box
shown in Fig. 1. This is one of the simplest cases where
photons are in the bound states. Also, we assume tha
absorption and transmission rates of photons at the boun
1063-651X/2002/66~3!/035501~3!/$20.00 66 0355
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are small. This assumption is valid for an extracting mirr
of which transmittivity is about a few percent. In this cas
u(r ) becomes the well-known wave function in a box-shap
resonant cavity,

us,s~r !5A16p\c2

XYZv
@es,s

x cos~klx!sin~kmy!sin~knz!

1es,s
y sin~klx!cos~kmy!sin~knz!

1es,s
z sin~klx!sin~kmy!cos~knz!#@u~x!2u~x2X!#

3@u~y!2u~y2Y!#@u~z!2u~z2Z!#, ~4!

whereu(x) is the step function,XYZ is the volume of the
cavity, ands5( l ,m,n) is the ‘‘quantum number’’ indicating
the state of a photon in the cavity.es,s

i ( i 5x,y,z) represents
the polarization vector in thei direction. kl5p l /X, km

5pm/Y, andkn5pn/Z satisfy (v lmn /c)25kl
21km

2 1kn
2 . It

is straightforward to extend our theory to any type of cavit
or waveguides. The only thing one has to do is to calcul
A(r ) for suitable boundary conditions.

The number of emitted photons with energy\v lmn may
be calculated by the golden rule:

Nlmn5
2pZ

\v (
p8

(
s

1

2 (
n,n8

u^1lmn
s ,p8n8u~2e!a•Au0,pn&u2

3d~Ep2Ep82\v lmn!, ~5!

whereEp andp are the energy and momentum of the ele
tron andunlmn

s & is the eigenvector of the Hamiltonian for th

FIG. 1. A relativistic electron passing through a box-shaped c
ity composed of mirrors. Due to the symmetry breaking in spa
the free electron may emit a bound photon spontaneously.
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radiation field representing that the number of photons in
statelmn,s is n. The wave function for the electron is give
by ^r upn&5un(p)exp(ip•r /\), where the spinorun(p) is
normalized in a box so as to give^p8n8upn&5dp8,pdn,n8 . We
have assumed that the normalization box of the electro
the same as that of photons in thexy direction, while it is
much longer in thez direction. We have also assumed th
the electron is moving along thez axis ~see Fig. 1!.

Substituting Eqs.~2!–~4! into Eq. ~5!, we obtain after
some calculations

Nlmn5
8pe2v2

XYZ\v lmn

v lmn
2 2kn

2c2

~v lmn
2 2kn

2v2!2

3F12~21!ncosS v lmn

v
ZD G . ~6!

In deriving Eq. ~6!, we have assumed that\v lmn!Ep . A
typical radiation spectrum calculated from Eq.~6! is given in
Fig. 2. We have chosen the size of the cavity asZ515,X
5210,Y5310 mm so thatv lmn is not degenerate in th
shown range of the wavelength.

FIG. 2. Number of photonsNlmn in the box-shaped resonan
cavity irradiated with a 30-MeV electron as a function of the pho
wavelength. Only the modesl 50 are shown.~a! represents the
photon spectrum emitted by a single electron whereas~b! shows
Nlmn

(bunch)/ne , i.e., the number of photons per electron in a bun
d55 mm andne5107 ~see the text!.
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As seen from Eq.~6!, if the particle is sufficiently relativ-
istic ~i.e., satisfyingv'c), the number of emitted photon
does not depend on the energy of the incident electron.

Though radiation spectra depend on the shape of the
ity, Eq. ~6! approaches to a certain continuous spectrum li
if we takeX,Y→`. It is convenient to compare the intensi
of the ‘‘one-dimensional cavity limit’’ to other radiation pro
cesses such as transition radiation. In this limit, we ha
Nlmn'Nn(k')d2k' because the frequency of photons m
be regarded as a continuous variable. Then, by using
relation c2d2k'5vdvdf and integrating Eq.~6! over the
azimuth anglef, we obtain@6#

dNn~v!

dv
5

4e2v2

\c2Z

v22kn
2c2

~v22kn
2v2!2 F12~21!ncosS v

v
ZD G ,

~7!

wherev5cAk'
2 1kn

2.
In experiments, the total number of photons

S dN~v!

dv D
cav

5(
n

`
dNn~v!

dv
~8!

will be actually observed. In Fig. 3, we showDN
5(dN/dv)cavDv taking the summation up ton5120. This
number is enough to obtain a converged value for Fig. 3.
comparison, the transition radiation probability@2#

S dN~v!

dv D
TR

5
e2

\cv
@ ln~4g2!21# ~9!

is also shown as the dotted line in Fig. 3. For waveleng
satisfying the conditionl!Z, the total number of photons o
Eq. ~8! approaches to the same order as that of transi
radiation, Eq.~9!. This fact may be explained by taking th
continuous frequency limit in the following way. Atn@1,
the terms with the factor (21)n in Eq. ~7! oscillate rapidly
and hence after the summation they are canceled@7#. Then,
by changing the summation to the integration and assum
that k15p/Z!v/c, we obtain

,

FIG. 3. Number of photonsDN5(dN/dv)cavDv as a function
of photon energy in the one-dimensional cavity limit. The dott
line shows the number of photons for transition radiation. ForDv
we have takenDv/v51022. Other parameters needed for the n
merical calculation are the same as Fig. 2.
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S dN~v!

dv D
cav

'
4e2v2

\c2Z
S Z

p D E
k1

v/c

dk
1

v22k2v2
'

2e2

\cv
ln g2.

~10!

This value is about twice as large as that of Eq.~9!. With this
correspondence, one may think that the cavity radiation
kind of transition radiation. This is valid only in the sen
that transition radiation, parametric x-ray radiation, t
Smith-Purcell effect, and diffraction radiation are all th
same, in that their origin is the space inhomogeneity of
dielectric response function@1,2#. Of course, we usually dis
tinguish, for example, parametric x-ray radiation from tra
sition radiation because the former is based on the lat
periodicity while the latter is based on the discontinuity
the surface. In this sense, the bound photon emission con
ered here is different from transition radiation. One of t
most significant differences is that the spectra of cavity
diation depend on the sidewalls of the cavity. In the on
dimensional cavity limit, the cavity radiation reduces to tra
sition radiation because the effect of the sidewa
disappears.

For a possible application of the cavity radiation, it
interesting to consider a compact source of strong
infrared light. In this case, there appears a coherent ef
when l*d, whered represents the size of the bunch of
pulsed electron beam. In this case, radiation probability
enhanced as@3#
,
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Nlmn
(bunch)5neNlmn~11neur̃~kn!u2!

'ne
2NlmnU E r~z!eiknzdzU2

, ~11!

wherene is the total number of electrons in the bunch a
r(z) is the density distribution along the beam direction.
l@d, which is satisfied at centimeter wavelengths, then
have r̃(kn);r̃(0)51, wherer̃(k) is the Fourier transform
of r(z). In this caseNlmn

(bunch) has a perfect coherence and
becomesne times stronger than the incoherent case. Sincene
is a huge number, radiation is enhanced by many order
magnitude. An example of this bunch effect is shown in F
2~b!. The number of photons, per one electron in the bunc
enhancedne times at wavelengths satisfyingl@d. For such
a large number of photons the induced emission may a
@4# in the cavity with the use of the pulsed beam. In Ref.@5#
related phenomena were reported, although the photons
emitted as synchrotron radiation. It is interesting to note t
in Ref. @5#, the authors mentioned that even without the ma
netic field they observed line spectra. The authors attribu
this radiation to transition radiation. However, since the f
mation length of transition radiation is of the order of 10
at the millimeter wavelengths, the radiation from each mir
cannot be considered independently. One must conside
radiation process coherently as discussed above.

We are grateful to Professor Y. Shibata, Professor
Ikezawa, and R. Fukumoto for valuable discussion.
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@7# More precisely, in connection with Ref.@6#, we should write
the condition that the oscillating factor may be neglected
Z@ l f(v). This condition is satisfied in the high-frequenc
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