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If the states of photons are bound, another type of spontaneous emission becomes possible for a relativistic
electron due to the symmetry breaking in space. We obtain the radiation probability for a relativistic electron
passing through a box-shaped cavity. The radiation spectrum is discrete in which line positions are determined
by the boundary condition of the cavity.
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It is well known that a free electron in vacuum cannotare small. This assumption is valid for an extracting mirror
emit a photon spontaneously because energy and momentusfi which transmittivity is about a few percent. In this case,
are not conserved simultaneously. However, if the electron isi(r) becomes the well-known wave function in a box-shaped
in a binding state at least in one direction, spontaneous emigsesonant cavity,
sion becomes possible. Free electron laser, channeling radia-

tion, and coherent bremsstrahlung may be classified into this 16mhc? ) ]
kind of spontaneous emissi6h]. In these processes the mo- Us.o(N =\ 5y 7,18 cOSkX)sin(kpy)sin(knz)
mentum is not conserved in the direction where the radiating
electron is bound. +e , sin(k;x)cogkyy)sin(knz)

In this paper, we show that yet another type of spontane- ) )
ous emission becomes possible when the emitted photons are + &, sin(kx)sin(kmy) cogknz) JL6(X) = 6(x = X)]
in binding states, such as those in a cavity or waveguide. For X[ 6(y)— 6(y—Y) ][ 6(2) — 6(z—2)], @)

example, if an electron passes through a cavity as shown in

Fig. 1, it may emit photons spontaneously because photonghere ¢(x) is the step functionXY Z is the volume of the
do not have definite momentum and hence the restrictiogayity, ands=(I,m,n) is the “quantum number” indicating

coming from momentum conservation does not exist. In thigne state of a photon in the caviej; (i=x,y,2) represents
case, the electron is virtually free, unlike the “free electron” 4,4 polarization vector in thé di;rection K =ml/X, k

. . . . . . . . il m
laser in which the motion of electrons is in fact sinusoidal or _ amlY, andk,= mn/Z satisfy (@mn/c)2=k2+ k2 +K2. It

spiral. is strai -
. . . L ghtforward to extend our theory to any type of cavities
Lelt '{ﬁ d_ertlve trt'.e prg)btabmty:)hftheh (;awtfy :gdlatcljon. AI\St' or waveguides. The only thing one has to do is to calculate
_u?_ua ’I ? Interaction be ween the photon field and a rela IVA(r) for suitable boundary conditions.
IStic electron 1s given by The number of emitted photons with enerfw,,,, may

H' ()= —ea-A(r,t), 1) be calculated by the golden rule:

wherea is the ordinary Dirac matrix and(r) is the photon N|mn=2ﬁLZ > % > (15,.0" v'|(—€)a-A|0pr)|?
field, v T 2,7

) X 8(Ep—Epr — i wjmp), ®)
ArD =2 [Use(Nas (D +ul,(nal (0], (2
.o whereE, andp are the energy and momentum of the elec-

i o i tron and|n|r,,,) is the eigenvector of the Hamiltonian for the
whereag ,(t) is the annihilation operator of the photon in the

modes and polarizatiornr. A(r,t) is normalized as =

1 1
3 2 2\ _ t -
Swfvd r([EJ2+|H[?) ;T fiws | 8% 48 5+ 2), &)

where E=—9A/cdt and H=rotA are the electromagnetic e
field in the cavity,V the volume of the cavity where photons Qv
are boundf ws , the energy of the photon in the modand
the polarization directior, andas ,(t) =as , eXp(—iwst).
In this paper, for the purpose of clarifying the idea of the 0 5
radiation process, we consider the radiation field in a box as
shown in Fig. 1. This is one of the simplest cases where the FIG. 1. A relativistic electron passing through a box-shaped cav-
photons are in the bound states. Also, we assume that th§ composed of mirrors. Due to the symmetry breaking in space,
absorption and transmission rates of photons at the boundatlye free electron may emit a bound photon spontaneously.
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FIG. 3. Number of photonAN=(dN/dw).,,Aw as a function

of photon energy in the one-dimensional cavity limit. The dotted

line shows the number of photons for transition radiation. &ar
H1200 (b) we have takem\ w/ w=10"2. Other parameters needed for the nu-
<1000 merical calculation are the same as Fig. 2.
a
é 800 As seen from Eq(6), if the particle is sufficiently relativ-
£ 600 istic (i.e., satisfyingv~c), the number of emitted photons
E does not depend on the energy of the incident electron.
= 400 Though radiation spectra depend on the shape of the cav-
200 ity, Eq. (6) approaches to a certain continuous spectrum limit
|| h if we takeX,Y—oo. It is convenient to compare the intensity
0 — | |' of the “one-dimensional cavity limit” to other radiation pro-
5 10 15 20 25 30 cesses such as transition radiation. In this limit, we have
Wavelength [mm] Nimn~Np(k,)d?k, because the frequency of photons may

be regarded as a continuous variable. Then, by using the
FIG. 2. Number of photon§\,,, in the box-shaped resonant relation c?d’k, = wdwd¢ and integrating Eq(6) over the
cavity irradiated with a 30-MeV electron as a function of the photonazimuth anglep, we obtain[6]
wavelength. Only the models=0 are shown.a) represents the

photon spectrum emitted by a single electron wher@sshows dN,(w) 4e?y? wZ_kﬁCZ ®
N({Purch/n,, i.e., the number of photons per electron in a bunch, do ~ 72 PRI 2[ —-(-1) CO&( Z”
d=5 mm andn,=10’ (see the tejt w he'Z (w°—kpu) @
radiation field representing that the number of photons in the (e ., = C\/W
statelmn, o is n. The wave function for the electron is given In experiments, the total number of photons
by (r|pv)=u,(p)expip-r/#), where the spinowu,(p) is
normalized in a box so as to give'v'|pv)= 8,/ ,6,, . . We dN * 4N
have assumed that the normalization box of the electron is ( (w)) => nl @) (8)
the same as that of photons in thg direction, while it is do cav " do
much longer in thez direction. We have also assumed that .
the electron is moving along theaxis (see Fig. 1 will be actually observed. In Fig. 3, we showN
Substituting Egs(2)—(4) into Eq. (5), we obtain after ~=(dNdw)ca,Aw taking the summation up ta=120. This
some calculations number is enough to obtain a converged value for Fig. 3. For
comparison, the transition radiation probabili]
8mey? _k2 dN(w) e?
N b S| =r—ln(4y»)-1] ©
XY Zh & (wlmn_knv ) R
N ®mn is also shown as the dotted line in Fig. 3. For wavelengths
X|1=(=1)%og —=2]|. (6)  satisfying the condition <Z, the total number of photons of

Eq. (8) approaches to the same order as that of transition

radiation, Eq.(9). This fact may be explained by taking the
In deriving Eq.(6), we have assumed thétw,,,<E,. A continuous frequency limit in the following way. At>1,
typical radiation spectrum calculated from E6) is given in  the terms with the factor{1)" in Eq. (7) oscillate rapidly
Fig. 2. We have chosen the size of the cavityZas15X and hence after the summation they are cancglgdThen,
=210Y=310 mm so thatw,,, is not degenerate in the by changing the summation to the integration and assuming
shown range of the wavelength. thatk,=n/Z<w/c, we obtain
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z 2
ko

K————=~-—Iny~.
Ky d w?—k%? hcw ? 2

f p(2)edz

) ] ] ] ) wheren, is the total number of electrons in the bunch and
This value is about twice as large as that of B). With this () s the density distribution along the beam direction. If

correspondence, one may think that the cavity radiation is & >d, which is satisfied at centimeter wavelengths, then we

kind of transition rad|_at|on. This is yalld only in _the sense havep(k,)~p(0)=1, wherep(k) is the Fourier transform
that transition radiation, parametric x-ray radiation, the bunc

; ; : 4y of p(2). In this caseN{P“"°" has a perfect coherence and it
Smlth-PurceII effgct, .a_nd. diffraction rad|at|on are. all the becomes, times stronger than the incoherent case. Simce
same, in that their origin is the space inhomogeneity of th

. ) . T Ngs a huge number, radiation is enhanced by many orders of
dielectric response functidii, 2]. Of course, we usually dis- ,aqnitude. An example of this bunch effect is shown in Fig.

tinguish, for example, parametric x-ray radiation from tran- ;)" the number of photons, per one electron in the bunch is

sition radiation because the former is based on the Iattic%nhancedw times at wavelengths satisfying>d. For such
periodicity while the latter is based on the discontinuity at large nu?nber of photons the induced emiséion may arise

the surface. In this sense, the bound photon emission consi 1] in the cavity with the use of the pulsed beam. In R&f.
ered here is different from transition radiation. One of therelated phenomena were reported, although the photons were

most significant differences is that the spectra of cavity ragnitted as synchrotron radiation. It is interesting to note that

diation depend on the sidewalls of the cavity. In the ones, pe 5] the authors mentioned that even without the mag-
dimensional cavity limit, the cavity radiation reduces to tran-

I - : netic field they observed line spectra. The authors attributed
sition radiation because the effect of the sidewallsis ragiation to transition radiation. However, since the for-
disappears. . N . . . mation length of transition radiation is of the order of 10 m

For a possible application of the cavity radiation, it is at the millimeter wavelengths, the radiation from each mirror

interesting to consider a compact source of strong fare,nnat e considered independently. One must consider the

infrared light. In this case, there appears a coherent eﬁe%\diation process coherently as discussed above.
whenA=d, whered represents the size of the bunch of a

pulsed electron beam. In this case, radiation probability is We are grateful to Professor Y. Shibata, Professor M.

(dN(w)) ~4e202

fw/c 1 2¢? NEPUM= NN o 1+ e[ p(Kp) )
do |, #c?z

(11

(10 %ngNlmn

enhanced ag3]

lkezawa, and R. Fukumoto for valuable discussion.
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[6] The factor[1—(—1)"coswZ/v)] in Eq. (7) is related to the

well-known interference factdrl —cos@/I;)] [2,3] in the fol-
lowing way: sincek,Z—nw7=0, we may havawZ/v=wZlv
—k,Z+nmw=Z/1;+n, wherel; is the formation lengthl,2].
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[7] More precisely, in connection with Ref6], we should write

the condition that the oscillating factor may be neglected as
Z>1¢(w). This condition is satisfied in the high-frequency
limit.



